

VSEPR = Valence Shell Electron Pair Repulsion

The valence shell electrons are important for molecular shape.

> Valence electrons are paired or will be paired in a molecule

Valence shell electrons pairs repel each other

The shape of a molecule is determined by the positions of the election pairs when they are a maximum distance apart.

3D Representation of bonds on pape

Bond	Appearance	Meaning
Solid line		The bond is in the same plane of the page
Dashed line		The bond is behind the plane of the page (away from the viewer)
Wedged line		The bond is our of the plane of the page (towards the viewer)

Using VSEPR theory to predict the shapes of molecules.

General formula	Bond pairs	Lone pairs	Total pairs	Geometry	Shape	Examples
AX ₂	2	0	2	Linear		CO ₂ , CS ₂
AX ₃	3	0	3	Trigonal planar		BF ₃ , BH ₃
AX ₄	4	0	4	Tetrahedral		CH ₄ , SiH ₄
AX ₃ E	3	1	4	Trigonal pyramidal		NH ₃ , PCI ₃
AX ₂ E	2	2	4	V-shaped		H ₂ O, OCl ₂

A is the central atom; X is another atom; E is a lone pair of electrons

Examples: Draw the Lewis structure and use VSEPR theory to predict the shape of each molecule.

a) H ₂ O	b) H ₂ S	c) SiBr ₄	d) PF ₃
e) BBr ₃	f) NH ₃	g) CO ₂	