SCH3UI Ms. Williamson

Table 1: Predicting the Products of Some Common Types of Synthesis Reactions

Types of Synthesis Reaction	Example
1. Two different elements form a binary compound	
 a. A univalent metal and a non-metal form an ionic compound Electrons are transferred from the metal to the non-metal so ions are formed Use the periodic table to determine the ion charge for each element Predict the product following nomenclature rules Name the compound formed ends in -ide 	Write the balanced chemical equation that shows the synthesis reaction between potassium metal and fluorine gas. $ potassium + fluorine \rightarrow potassium \ fluoride \\ 2 \ K_{(s)} + F_{2(g)} \rightarrow 2 \ KF_{(s)} $
 b. A multivalent metal and a non-metal form an ionic compound Use the periodic table to determine the ion charge for each element All ion charges for the multivalent element must be considered Two or more equations will be written using nomenclature rules to predict the products Name of compound formed ends in -ide 	Write the balanced chemical equation that shows the synthesis reaction between iron and oxygen. Iron can have an ion charge of 3+ or 2+; oxygen has an ion charge of 2- so two different equations can be written. iron + oxygen \rightarrow iron (III) oxide $4\ Fe_{(s)} + 3\ O_{2(g)} \rightarrow 2\ Fe_2O_{3(s)}$ iron + oxygen \rightarrow iron (II) oxide $2\ Fe_{(s)} + O_{2(g)} \rightarrow 2\ FeO_{(s)}$
 c. Two non-metals form a covalent compound Electrons are shared between these atoms so no ions are formed. So there are no ion charges to determine the products. Additional information is needed to determine the product as many non-metals can combine in several different ratios 	Write the balanced chemical equation that shows the synthesis reaction between sulfur and oxygen forming sulphur dioxide. $ \begin{aligned} \text{sulfur + oxygen} &\rightarrow \text{sulfur dioxide} \\ S_{8(s)} + & 8 \ O_{2(g)} \rightarrow & 8 \ SO_{2(g)} \end{aligned} $
 Name of compound formed ends in -ide An element and a compound form a new compound Products cannot be predicted with certainty Products formed during the reaction must be collected and analysed carbon monoxide + oxygen → carbon dioxide 2 CO_(g) + O_{2(g)} → 2 CO_{2(g)} 	
 Two compounds form a new compound Products cannot be predicted with certainty Reactants are small, simple compounds 	
a. A non-metal oxide with water ➤ Forms an ACID b. A metal oxide with water ➤ Forms a BASE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2: Predicting the Products of Some Common Types of Decomposition Reactions

Types of Decomposition Reaction	Example
A binary compound decomposes into its elements.	magnesium chloride \rightarrow magnesium + chlorine $MgCl_{2(s)} \rightarrow Mg_{(s)} + Cl_{2(q)}$
A hydrate decomposes into an ionic compound and water.	barium hydroxide octahydrate \rightarrow barium hydroxide + water Ba(OH) ₂ •8H ₂ O _(s) \rightarrow Ba(OH) _{2(s)} + 8 H ₂ O _(q)
3. A metal nitrate decomposes into a metal nitrite and oxygen gas.	potassium nitrate \rightarrow potassium nitrite + oxygen 2 KNO _{3(s)} \rightarrow 2 KNO _{2(s)} + O _{2(q)}
4. A metal carbonate decomposes into a metal oxide and carbon dioxide.	zinc carbonate \rightarrow zinc oxide + carbon dioxide ZnCO _{3(s)} \rightarrow ZnO _(s) + CO _{2(g)}
5. A metal hydroxide decomposes into a metal oxide and water.	potassium hydroxide \rightarrow potassium oxide + water 2 KOH _(s) \rightarrow K ₂ O _(s) + H ₂ O _(ℓ)