Classifying Reactions and Balancing Chemical Equations

Name:	
Date:	and the second s
- Allerton	Mark State Communication Commu

Instructions: Balance the following equations, indicating the state of each product and classify each reaction as:

C = combustion

SD = single displacement

S = synthesis

DD = double displacement

D = decomposition

Reaction Type

 $1. \qquad Cu_{(s)} + Q_{2(g)} \rightarrow CuO_{(s)}$

 $\underline{\hspace{1cm}}$ 2. $\underline{\hspace{1cm}}$ \underline

_____ 3. ___(NH₄)₃PO_{4(aq)} + ___ZnCl_{2(aq)} \rightarrow ___Zn₃(PO₄)₂ + ___NH₄Cl

 $\underline{\hspace{1cm}}$ 4. $\underline{\hspace{1cm}}$ \underline

 $\underline{\hspace{1cm}}$ 5. $\underline{\hspace{1cm}}$ SbH_{3(s)} \rightarrow $\underline{\hspace{1cm}}$ Sb + $\underline{\hspace{1cm}}$ H₂

 $\underline{\hspace{1cm}} 6. \quad \underline{\hspace{1cm}} AgNO_{3(aq)} + \underline{\hspace{1cm}} H_2SO_{4(aq)} \rightarrow \underline{\hspace{1cm}} Ag_2SO_4 + \underline{\hspace{1cm}} HNO_3$

_____7. __CaCO_{3(s)} \rightarrow ___CaO +___CO₂

- 8. - Fe_(s) + - Cr(NO₃)_{3(aq)} \rightarrow Fe (NO₃)₂ + - Cr

 $\underline{\hspace{1cm}}$ 10. $\underline{\hspace{1cm}}$ As + $\underline{\hspace{1cm}}$ O₂ \rightarrow $\underline{\hspace{1cm}}$ As₂O₃

_____11. ____ $H_2O_{(1)} \rightarrow$ _____ $H_2 +$ ___ O_2

 $\underline{\hspace{1cm}}$ 12. $\underline{\hspace{1cm}}$ Pb₃O_{4(s)} \rightarrow $\underline{\hspace{1cm}}$ PbO + $\underline{\hspace{1cm}}$ O₂

_____ 13. ____ $C_3H_8(g) + ___O_2(g) \rightarrow ___H_2O + ___CO_2$

 $\underline{\hspace{1cm}}$ 14. $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$

 $_$ 15. $_$ $O_{2(g)}$ \longrightarrow $_$ O_3

 $\underline{\hspace{1cm}} 16. \quad \underline{\hspace{1cm}} H_2O_{2(aq)} \rightarrow \underline{\hspace{1cm}} H_2O + \underline{\hspace{1cm}} O_2$

Write a word equation and a balanced chemical equation for each of the following:

1. When sodium is heated in gaseous chlorine, table salt (sodium chloride) is produced.

Classifying Reactions and Balancing Chemical Equations

Name:	
Date:	The second control of

2	When calcium	oxide is added to	nitric acid	calcium r	nitrate and	water are	formed
die .	vviicii caiciuiii	ovide is added to	mune aciu,	Calcium i	muate and	water are	ioimea

- 3. Aluminum can be produced, along with water, by bubbling hydrogen gas through a mash of aluminum oxide.
- 4. In the upper atmosphere, ammonium sulfate particles are formed by the reaction of ammonia, sulfur trioxide and water.
- One kind of rocket fuel (B₅H₉) burns to produce boron oxide and water vapour.
 (Hints: What does burn mean? Assume boron acts as a metal with a 3+ charge to form boron oxide)

